资源类型

期刊论文 268

年份

2023 17

2022 28

2021 28

2020 24

2019 20

2018 11

2017 13

2016 13

2015 9

2014 9

2013 12

2012 13

2011 10

2010 8

2009 11

2008 13

2007 13

2006 2

2005 3

2003 2

展开 ︾

关键词

力学性能 6

严格雪崩准则 2

机械性能 2

自相关函数 2

Al2O3-MxOy 1

CFRP索斜拉桥 1

Chrestenson谱 1

DNA结构 1

FRP 聚合物 1

GDM过滤技术 1

HDPE 1

Nd-YAG 1

PEDOT:PSS 1

PP 1

Pt–Ba–Ce/γ-Al2O3 催化剂,物理化学性质,NOx存储和还原,NOx 排放,H2 还原剂 1

RE-Si3N4 1

RLC网络;谐振性质;振荡特性;幅频特性 1

TRIP钢 1

Walsh循环谱 1

展开 ︾

检索范围:

排序: 展示方式:

腌制工艺对大菱鲆质构及理化性质的影响

王甜甜,李振兴,林洪,郭晓华

《中国工程科学》 2014年 第16卷 第9期   页码 64-68

摘要:

本文通过分析腌制大菱鲆质构及理化指标的变化,研究食盐浓度、腌制时间和腌制方式等对腌制大菱鲆品质的影响。结果表明:食盐浓度和腌制时间对腌制大菱鲆咀嚼度影响显著(P<0.05),对硬度、弹性和胶黏性无显著影响;腌制方式对腌制品的硬度、弹性和胶黏性影响显著(P<0.05),对咀嚼度无显著影响。在腌制过程中,食盐浓度每增加2 %,酸价降低1.03 mg/g,过氧化值平均降低0.1 g/100 g;腌制时间越长,酸价和过氧化值均有所升高;对感官评价来说,腌制时间有比较显著的影响(P<0.05)。由此可知,腌制工艺对大菱鲆产品的品质有显著的影响,本文通过分析各参数的影响,为进一步优化大菱鲆腌制工艺提供基础数据。

关键词: 腌制工艺     大菱鲆     质构     理化性质     感官评价    

EXTRACTION AND EVALUATION OF EDIBLE OIL FROM SCHIZOCHYTRIUM SP. USING AN AQUEOUS ENZYMATIC METHOD

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 623-634 doi: 10.15302/J-FASE -2021400

摘要:

Schizochytrium sp., a marine microalga, is a potential source of edible oil due to its short growth cycle and rapid lipid accumulation, especially of docosahexaenoic acid. An approach to isolate edible microalgal oil from Schizochytrium sp. using aqueous enzymatic extraction (AEE) was developed. Parameters were optimized by single-factor experiments followed by Box-Behnken design. Proteases were effective in extracting oil. The maximum free oil recovery (49.7%±0.58%) and total oil recovery (68.1%±0.94%) were obtained under optimum conditions of liquid-to-solid ratio of 4.8:1, a 2.5% enzyme concentration of papain and an extraction time of 2.2 h. There was a significant difference (P<0.05) in polyunsaturated fatty acid composition between microalgal oil obtained by AEE and by Soxhlet extraction, with the former having superior physiochemical properties and higher concentrations of bioactive components including total phenolic compounds and total tocopherols. These findings indicate a potential application of AEE for extraction of oil from Schizochytrium sp.

 

关键词: antioxidant activity / aqueous enzymatic extraction / edible microalgal oil / fatty acid composition / physicochemical properties    

Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 46-58 doi: 10.1007/s11705-018-1723-x

摘要: Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as micro-cell-carriers, micro-drug-carriers, etc., are presented.

关键词: sodium cellulose sulfate     biomaterial     physicochemical properties     microcarriers    

Adsorption performance and physicochemical mechanism of MnO

Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 538-551 doi: 10.1007/s11705-020-1958-1

摘要: In this work, an adsorbent, which we call MnPT, was prepared by combining MnO , polyethylenimine and tannic acid, and exhibited efficient performance for Cu(II) and Cr(VI) removal from aqueous solution. The oxygen/nitrogen-containing functional groups on the surface of MnPT might increase the enrichment of metal ions by complexation. The maximum adsorption capacities of MnPT for Cu(II) and Cr(VI) were 121.5 and 790.2 mg·g , respectively. The surface complexation formation model was used to elucidate the physicochemical interplay in the process of Cu(II) and Cr(VI) co-adsorption on MnPT. Electrostatic force, solvation action, adsorbate–adsorbate lateral interaction, and complexation were involved in the spontaneous adsorption process. Physical electrostatic action was dominant in the initial stage, whereas chemical action was the driving force leading to adsorption equilibrium. It should be noted that after adsorption on the surface of MnPT, Cr(VI) reacted with some reducing functional groups (hydroxylamine-NH ) and was converted into Cr(III). The adsorption capacity declined by 12% after recycling five times. Understanding the adsorption mechanism might provide a technical basis for the procedural design of heavy metal adsorbents. This MnPT nanocomposite has been proven to be a low-cost, efficient, and promising adsorbent for removing heavy metal ions from wastewater.

关键词: MnO2-polyethylenimine-tannic acid composite     surface complexation formation model     Cu(II)     Cr(VI)     physicochemical mechanism    

Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies

Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 16-38 doi: 10.1007/s11783-014-0697-2

摘要: Bisphenol A (BPA), an endocrine disrupting compound, has caused wide public concerns due to its wide occurrence in environment and harmful effects. BPA has been detected in many surface waters and drinking water with the maximum concentrations up to tens of μg·L . The physicochemical technology options in eliminating BPA can be divided into four categories: oxidation, advanced oxidation, adsorption and membrane filtration. Each removal option has its own limitation and merits in removing BPA. Oxidation and advanced oxidation generally can remove BPA efficiently while they also have some drawbacks, such as high cost, the generation of a variety of transformation products that are even more toxic than the parent compound and difficult to be mineralized. Only few advanced oxidation methods have been reported to be able to mineralize BPA completely. Therefore, it is important not only to identify the major initial transformation products but also to assess their estrogenic activity relative to the parent compounds when oxidation methods are employed to remove BPA. Without formation of harmful by-products, physical separation methods such as activated carbon adsorption and membrane processes are able to remove BPA in water effluents and thus have potential as BPA removal technologies. However, the necessary regeneration of activated carbon and the low BPA removal efficiency when the membrane became saturated may limit the application of activated carbon adsorption and membrane processes for BPA removal. Hybrid processes, e.g. combining adsorption and biologic process or combining membrane and oxidation process, which can achieve simultaneous physical separation and degradation of BPA, will be highly preferred in future.

关键词: Bisphenol A (BPA)     occurrence     conventional oxidation     advanced oxidation     adsorption     membrane filtration    

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 365-381 doi: 10.1007/s11783-013-0520-5

摘要: In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl and modified by H PO . Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbon-ceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m ·g ). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100°C–250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.

关键词: Pd/carbon-CeO2     Pd/carbon-zeolite     pine cone     ZnCl2     catalytic oxidation     xylene    

解淀粉芽孢杆菌发酵红小豆的理化特性和生物活性 Article

吴珊, 卢帅, 刘军, 杨绍青, 闫巧娟, 江正强

《工程(英文)》 2021年 第7卷 第2期   页码 219-225 doi: 10.1016/j.eng.2020.10.010

摘要:

本研究采用解淀粉芽孢杆菌发酵红小豆(Vigna umbellata),并评价了发酵红小豆的理化特性和生物活性。以纤溶酶活性为指标优化了发酵条件,在最适发酵条件下,纤溶酶活性最高达78.0 FU∙g-1(4890 IU∙g-1,纤维蛋白平板法)。发酵红小豆中多肽含量(2.1~10.9 g∙100 g-1)、总酚含量(116.7~388.5 mg没食子酸∙100 g-1)、总黄酮含量(235.5~354.3 mg芦丁∙100 g-1)、花青素含量(20.1~47.1 mg∙100 g-1)和超氧化物歧化酶活性(55.3~263.6 U∙g-1)显著增加。红小豆经发酵后的2,2-二苯基-1-苦肼基(DPPH)和2,2-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除活性和铁离子还原抗氧化能力(FRAP)较未发酵的红小豆提高1.9~4.8倍。此外,发酵红小豆的二肽基肽酶Ⅳ(DPP-Ⅳ)抑制活性、α-葡萄糖苷酶抑制活性和抗凝血活性显著提高。解淀粉芽孢杆菌发酵红小豆具有多种功能活性,对开发预防血栓性疾病的功能食品具有重要意义。

关键词: 固态发酵     红小豆     解淀粉芽孢杆菌     抗血栓活性     抗氧化活性     降血糖活性    

Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0719-x

摘要: The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction, under the requirements of the worldwide carbon emission strategy. However, serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication. The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability. In this review, a comparative assessment of grindability is performed using titanium alloy, nickel-based alloy, and high-strength steel. Firstly, this work considers the physicochemical properties as the main factors, and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed. Secondly, the comparative assessment of force, temperature, wheel wear and workpiece surface for titanium alloy, nickel-based alloy, and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance. High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece. Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn. The nano-enhancers with high hardness and spherical characteristics are better choices. Furthermore, a different option is available for high-strength steel grinding, which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging. Finally, the current challenges and potential methods are proposed to promote the application of biolubricant.

关键词: grinding     aerospace     difficult-to-machine material     biolubricant     physicochemical property     grindability    

Effect of different high viscosity modifiers on rheological properties of high viscosity asphalt

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1390-1399 doi: 10.1007/s11709-021-0775-z

摘要: High viscosity asphalt (HVA) has been a great success as a drainage pavement material. However, the larger porosity of drainage asphalt mixtures weakens the cohesion and adhesion and leads to premature rutting, water damage, spalling and cracking. The purpose of this study was to investigate the rheological properties of HVA prepared using different high viscosity modifiers through conventional tests, Brookfield viscosity tests, dynamic shear rheometer tests and bending beam rheometer tests. The conventional performance results demonstrated SBS + rubber asphalt (SRA-1/2) exhibited excellent elastic recovery and low-temperature flexibility. The 60°C dynamic viscosity results indicated TPS + rubber asphalt (TRA) had the excellent adhesion. The rotational viscosity results and rheological results indicated that SRA-2 not only exhibited excellent temperature stability and workability, as well as excellent resistance to deformation and rutting resistance, but also exhibited excellent low-temperature cracking resistance and relaxation performance. Based on rheological results, the PG classification of HVA was 16% rubber + asphalt for PG76-22, 20% rubber + asphalt for PG88-22, TRA and SRA-1/2 for PG88-28. From comprehensive evaluation of the viscosity, temperature stability and sensitivity, as well as high/low temperature performance of HVA, SRA-2 was found to be more suited to the requirements of drainage asphalt pavement materials.

关键词: high viscosity asphalt     rheological properties     rubber     modifier     viscosity    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1209-1221 doi: 10.1007/s11709-021-0764-2

摘要: Mechanically stabilized earth (MSE) retaining walls are popular for highway bridge structures. They have precast concrete panels attached to earth reinforcement. The panels are designed to have some lateral movement. However, in some cases, excessive movement and even complete dislocation of the panels have been observed. In this study, 3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters. The effects of pore pressure, soil cohesion, earth reinforcement type and length, breakage/slippage of reinforcement and concrete strength, were examined. Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length, and unaffected by concrete strength. Soil cohesion has a minor effect, while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls. The steel grid stresses were below yielding, while the geogrid experienced significant stresses without rupture. Geogrid reinforcement may be used taking account of slippage resistance and wall movement. If steel grid is used, non-cohesive soil is recommended to minimize corrosion. Proper soil drainage is important for control of pore pressure.

关键词: mechanically stabilized earth walls     precast concrete panels     backfill soil     finite element modeling     earth reinforcement    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

Synthesis, characterization and assessment thermal properties of clay based nanopigments

Mohammad Banimahd KIEVANI, Milad EDRAKI

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 40-45 doi: 10.1007/s11705-015-1505-7

摘要: Nano-clay based pigments (NCP) are new type of pigments composed of organic dyes and layered silicate-clay nano-particles, and have already been used in polymeric coatings to improve mechanical thermal and stability properties. In this paper, the basic blue 41(BB41) was intercalated into Na - montmorillonite in an aqueous medium. The dye-intercalated montmorillonite was centrifuged, dried, and milled to prepare the nanopigment particles. X-ray diffraction showed an increase in the basal spacing, thus confirming intercalation of the BB41 molecules within the nanostructures of the interlayer spaces. Fourier transform infrared spectroscopy was used for identifying the functional groups and chemical bounding of Na -montmorillonite, BB41 and montmorillonite-BB41. The morphology of NCP was also studied by transmission electron microscopy. Finally, thermo-gravimetric analysis and differential thermograms suggested the thermal stability of the intercalated dye was improved.

关键词: nanopigment     layered silicate     cationic dye     thermal properties    

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based onrheological properties and micro-characterization

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 625-636 doi: 10.1007/s11709-023-0938-1

摘要: The research and development of high-performance pavement materials has been intensified owing to the demand for long-life pavements. This study is performed to develop a novel pavement material using waste rubber powder, waste lubricating by-product (LBP), and asphalt. Subsequently, the aging properties and aging mechanism of activated waste rubber powder modified asphalt (ARMA) are investigated based on its rheological properties and micro-characterization. The rheological results show that, compared with waste rubber powder modified asphalt (RMA), ARMA offers a higher aging resistance and a longer fatigue life. A comparison and analysis of the rheological aging parameters of ARMA and RMA show that LBP activation diminishes the aging sensitivity of ARMA. The micro-characterization result shows that the aging of ARMA may be caused by the fact that LBP-activated waste rubber powder is more reactive and can form a dense colloidal structure with asphalt. Therefore, the evaporation loss of asphalt light components by heat and the damage to the colloidal structure by oxygen during the aging process are impeded, and the thermal-oxidative aging resistance of ARMA is improved.

关键词: rubber powder modified asphalt     aging     mechanism     rheological     characterization    

Biological properties and clinical applications of berberine

Danyang Song, Jianyu Hao, Daiming Fan

《医学前沿(英文)》 2020年 第14卷 第5期   页码 564-582 doi: 10.1007/s11684-019-0724-6

摘要: Berberine, an isoquinoline alkaloid isolated from the Chinese herb and other plants, has a wide range of pharmacological properties. Berberine can be used to treat many diseases, such as cancer and digestive, metabolic, cardiovascular, and neurological diseases. Berberine has protective capacities in digestive diseases. It can inhibit toxins and bacteria, including , protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis. Recent evidence has confirmed that berberine improves the efficacy and safety of chemoradiotherapies. In addition, berberine regulates glycometabolism and lipid metabolism, improves energy expenditure, reduces body weight, and alleviates nonalcoholic fatty liver disease. Berberine also improves cardiovascular hemodynamics, suppresses ischemic arrhythmias, attenuates the development of atherosclerosis, and reduces hypertension. Berberine shows potent neuroprotective effects, including antioxidative, antiapoptotic, and anti-ischemic. Furthermore, berberine exerts protective effects against other diseases. The mechanisms of its functions have been extensively explored, but much remains to be clarified. This article summarizes the main pharmacological actions of berberine and its mechanisms in cancer and digestive, metabolic, cardiovascular, and neurological diseases.

关键词: berberine     Coptis chinensis     pharmacological properties     mechanism     clinical applications    

标题 作者 时间 类型 操作

腌制工艺对大菱鲆质构及理化性质的影响

王甜甜,李振兴,林洪,郭晓华

期刊论文

EXTRACTION AND EVALUATION OF EDIBLE OIL FROM SCHIZOCHYTRIUM SP. USING AN AQUEOUS ENZYMATIC METHOD

期刊论文

Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao

期刊论文

Adsorption performance and physicochemical mechanism of MnO

Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu

期刊论文

Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies

Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN

期刊论文

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

期刊论文

解淀粉芽孢杆菌发酵红小豆的理化特性和生物活性

吴珊, 卢帅, 刘军, 杨绍青, 闫巧娟, 江正强

期刊论文

Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant

期刊论文

Effect of different high viscosity modifiers on rheological properties of high viscosity asphalt

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

Synthesis, characterization and assessment thermal properties of clay based nanopigments

Mohammad Banimahd KIEVANI, Milad EDRAKI

期刊论文

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based onrheological properties and micro-characterization

期刊论文

Biological properties and clinical applications of berberine

Danyang Song, Jianyu Hao, Daiming Fan

期刊论文